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Phononic crystal (PC) beam-foundation systems are introduced to study the flexural vibration band gaps (BGs). Two 

general beam types, Euler beam and Timoshenko beam, are both considered. The finite periodic structures are 

constructed to describe the PCs in practice. The finite element analysis of the finite periodic structures shows that the 

stiffness of foundation influences the distribution of BGs. Moreover, the PC Timoshenko beam-foundation system has 

wider applicability in the engineering than the system with Euler beam. The periodic numbers of the finite structures affect 

the attenuation in BGs; the more periodic numbers give more distinct BGs. 
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1. Introduction 

 

In the last twenty years, the apparent existence of 

elastic/acoustic band gaps (BGs) in periodic composite 

materials has caused much attention [1-4]. Since 

Kushwaha [2] firstly proposed the concept of phononic 

crystals (PCs) to define these kinds of artificial 

periodically arrayed materials, some relevant potential 

applications about PCs, such as acoustic insulations [1
, 
3], 

vibration control [5], transducers [2], and wireless 

communications [6] have been designed. Furthermore, 

the researchers have performed a series of study mainly 

laid on the experimental tests of 1D, 2D and 3D 

problems and theoretical researches [7]. The common 

theoretical methods include the transfer matrix (TM) 

method [5
, 
8] the plane wave expansion method [2

, 
9], the 

finite difference time domain method [10], the multiple 

scattering theory [11], the lumped-mass method [12] and 

the finite element method [13]. 

At present, PC attracts researchers mainly because of 

its BG properties. However, in the actual applications, a 

PC component might be just a part of a complex system. 

Therefore, the influences of other components can not be 

neglected for these combined systems. Moreover, the PC 

component used in practice can not have the ideal infinite 

structure. The vibration properties of the finite periodic 

structures corresponding to the ideal PCs also should be 

emphasized. Considering the PC could adjust and control 

the elastic waves in its BGs [5
, 
14] while the general 

beam-foundation system is widely used in engineering 

[15-17], we try to propose a PC beam-foundation system 

and study its BG behaviors for the flexural vibrations 

based on the finite periodic structures [18-20]. Winkler 

model [21-23] is used here to describe the influence of 

the foundation for the preliminary study. 

In this paper, we first present the general PC 

beam-foundation systems and construct the finite 

periodic structures to describe them. Then, the 

corresponding frequency responses are calculated by 

ABAQUS, and the influence of the stiffness of 

foundation, beam type and periodic number are discussed. 

Finally, we draw the conclusion. 

 

 

2. PC beam-foundation system 

 

2.1 General description 

 

Fig. 1 shows a general PC beam on a Winkler 

foundation. In the x direction, the beam is composed of 

an infinite repetition of alternating segment i with 

material i, where i=1, 2, ... , n. The length, width and 

height of the segment i are ai, bi and hi. In the Winkler 

model, the parameter c represents the stiffness of 

foundation.  

According to the length height ratio of a beam, 

Timoshenko and Euler beam models could be used. 

Generally, the shear deformation and the rotary inertia 

with respect to the central axis exist naturally. 

Considering these effects, Timoshenko beam model 

could be given. The governing equation of the free 

flexural vibration of a segment in the PC Timoshenko 

beam on a Winkler foundation can be expressed as [21] 
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where E and G are the Young’s modulus and shear 
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modulus. I is the second axial moment of area. A is the 

cross section area. w(x,t) is the transverse displacement. κ 

is the shape factor of cross section, for the rectangular 

section, κ=5/6.  

For a segment, when the length is larger enough than 

the height, the effects of the shear deformation and rotary 

inertia become slightly and the Euler beam model could 

give the sufficiently precise results. Neglecting the shear 

deformation and the rotary inertia, the governing 

equation of the free flexural vibration of a segment in the 

PC Euler beam on a Winkler foundation could be written 

as [21] 
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Fig. 1. (a) A PC beam on a Winkler foundation 

composed of an infinite repetition of cells. The lengths 

and cross-section sizes of  different segments in a cell  

                are shown in (b). 

 

 

Considering the solution, w(x,t)=v(x)exp(iωt), due to 

the periodicity of the infinite structure along the x 

direction, the band structure of the PC beam-foundation 

system can be solved as an eigenvalue problem by using 

the Bloch’s theorem [24]. One can see the detailed 

method in Ref. [8
, 
18]. 

 

 

2.2 Finite periodic description 

 

The vibration properties of the finite structure with 

the same periodicity as the PC surely could reflect the 

BGs of the PC to a certain degree [25
, 
26]. In this study, 

the finite periodic structures are constructed to describe 

the systems of the PC Euler/Timoshenko beam on the 

Winkler foundation. The software ABAQUS is used to 

analyze their frequency responses of the flexural 

vibrations. A two component PC beam is considered. The 

process can be summarized as follows. First, two 

materials, aluminum and epoxy, are chosen. The 

parameters are respectively ρA=2730 kg/m
3
, EA=77.56 

GPa, GA=28.87 GPa, ρE=1180 kg/m
3
, EE=4.35 GPa and 

GE=1.59 GPa. Second, the geometric parameters are 

given as aA=aE=0.035 m, bA=bE=0.02 m, hA=hE=0.01 m. 

Third, the finite structure with a given periodic number is 

constructed. Next, the stiffness of the Winkler foundation 

should be added to the model. Finally, the frequency 

response analysis could be done at one end of the beam 

from applying the harmonic displacement impulses from 

0 Hz to 15000 Hz to the other end. In this process, two 

beam types, “cubic formulation” and “shear-flexible”, 

could be selected to represent the Euler and Timoshenko 

beam models respectively. The distribution of BGs can 

be easily found and analyzed from the distinct 

attenuation frequency ranges.  

The frequency response of the 8-cell above 

mentioned finite system with the Euler beam model and 

the stiffness of foundation as 2.5×10
7
 N/m

3
 is calculated 

and shown in Fig. 2. Three BGs exist in 0-15000 Hz. For 

comparison and validation, we also calculate the BGs of 

the corresponding PC Euler beam-foundation system by 

the TM method [18]. The comparison of the BGs ranges 

are shown in table 1. Surely, the results have agreements 

in the main and the frequency response analysis of the 

finite periodic structure could reflect the BG properties of 

the ideal PC, but the differences can not be neglected 

directly and the frequency response analysis gives more 

realistic vibration properties. The comparison of the PC 

Timoshenko beam-foundation system is not shown here, 

because the case has the similar situation as that with the 

Euler beam model. 

 

 
 

Fig. 2. Frequency response of the 8-cell 

aluminum-epoxy  PC  Euler beam  on  the Winkler  

     foundation with the stiffness of 2.5×107 N/m3. 

 
 

Table 1. Comparison of ranges of BGs (Hz). 

 

BG 

No. 

TM method Frequency response 

Beginning End Beginning End 

1 0.0 180.0 0.0 185.0 

2 1789.9 2655.8 1673.6 2621.8 

3 7999.7 13850.4 7828.8 13764.0 
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3. Results and discussion 

 

3.1 Influence of the stiffness of foundation 

 

Using the 8-cell structure with the Euler beam model, 

we study the influence of the stiffness of foundation. We 

choose several values of the stiffness of foundation from 

1.0×10
4
 N/m

3
 to 1.0×10

8
 N/m

3
. The frequency responses 

have the similar shape as that shown in Fig. 2. The 

detailed ranges of the first two BGs are shown in table 2. 

Along with the increase of the stiffness, the first BG 

which starts at 0 Hz becomes wider, while the boundaries 

of the other BGs all rise with a lesser degree for the 

higher frequencies. 

 

 

Table 2. Ranges of BGs with different foundations (Hz). 

 

c (N/m3) 
1st BG 2nd BG 

Beginning End Beginning End 

1.0×104 0.0 3.6 1657.3 2621.8 

1.0×105 0.0 11.5 1657.3 2621.8 

1.0×106 0.0 36.4 1664.3 2621.8 

2.5×107 0.0 185.0 1673.6 2621.8 

5.0×107 0.0 262.2 1692.7 2621.8 

8.0×107 0.0 331.0 1705.8 2640.7 

 

 

3.2 Influence of the beam type 

 

Then we apply the Euler and Timoshenko beam 

models respectively to the 8-cell structure with the 

stiffness of 2.5×10
7
 N/m

3
. Fig. 3 shows the frequency 

responses. The structure with the Timoshenko beam 

model gives lower frequency BGs compared with that 

with the Euler beam model. The difference becomes 

lager along with the increase of the frequency. 

Considering the geometric features of the beam segments 

in the model, actually, neglecting the shear deformation 

and the rotary inertia is not proper. Thus the structure 

with the Timoshenko beam model should give the more 

precise results. However, the first BG is caused by the 

existence of the foundation and its end frequency is 

determined by the fundamental mode of flexural 

vibration, the transverse translation motion. Therefore the 

first BGs obtained from the two systems with different 

beam models are the same. In addition, the influences of 

the shear deformation and the rotary inertia are bigger to 

the relatively high frequency vibrations than the 

relatively low frequency vibrations. Thus the frequency 

responses of the two systems with different beam models 

are in better agreement at lower frequency than that at 

higher frequency. 

 

 

 

 

3.3 Influence of the periodic number 

 

Finally, we study the influence of the periodic 

number of the finite periodic structure. Fig. 4 shows the 

frequency responses of the 4-cell, 8-cell and 12-cell 

structures with the Euler beam model and the stiffness of 

foundation as 2.5×10
7
 N/m

3
. Clearly, the periodic number 

mainly affects the attenuation in BGs. The more periodic 

numbers give stronger attenuation and more distinct BGs. 

Thus, enough periodic number should be designed in the 

applications, in order to guarantee that no vibrations exist 

in the ranges of BGs.  

 

 

4. Conclusion 

 

In conclusion, we study the flexural vibration BGs of 

the PC beam-foundation systems by the frequency 

response analysis based on the finite element method. 

Using the finite periodic structure corresponding to the 

ideal PC, the results close to the cases in applications 

could be given. The influence of the stiffness of 

foundation, beam type and periodic number to the BGs 

are discussed. The boundaries of BGs rise, following the 

increase of the stiffness of foundation, especially for the 

first BG. The PC Timoshenko beam-foundation system 

has wider applicability in the engineering than the system 

with Euler beam model. The periodic numbers of the 

finite structures affect the attenuation in BGs; the more 

periodic numbers give more distinct BGs. This study 

helps to design and manufacture PC beam-foundation 

systems. 

 

 

 
 

Fig. 3. Frequency responses of the 8-cell 

aluminum-epoxy PC beam on the Winkler foundation 

with the stiffness of 2.5×107 N/m3 in the cases of 

Timoshenko  (dash line) and Euler  (continuous line)  

                   beam models. 
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Fig. 4. Frequency responses of the aluminum-epoxy PC 

Euler beam on the Winkler foundation with the stiffness 

of 2.5×107 N/m3 in the cases of 4-cell (dash dot line), 

8-cell  (continuous  line)  and  12-cell  (dash line)  

                   structures. 
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